Modified Weibull Distribution for Analyzing the Tensile Strength of Bamboo Fibers
نویسندگان
چکیده
There is growing evidence that the standard Weibull strength distribution is not always accurate for the description of variability in tensile strength and its dependence on the gauge size of brittle fibers. In this work, a modified Weibull model by incorporating the diameter variation of bamboo fiber is proposed to investigate the effect of fiber length and diameter on the tensile strength. Fiber strengths are obtained for lengths ranging from 20 to 60 mm and diameters ranging from 196.6 to 584.3 μm through tensile tests. It is shown that as the within-fiber diameter variation increases, the fracture strength of the bamboo fiber decreases. In addition, the accuracy of using weak-link scaling predictions based on the standard and modified Weibull distribution are assessed, which indicates that the use of the modified distribution provides better correlation with the experimental data than the standard model. The result highlights the accuracy of the modified Weibull model for characterizing the strength and predicting the size dependence of bamboo fiber.
منابع مشابه
Effect of the Statistical Nature of Fiber Strength on the Predictability of Tensile Properties of Polymer Composites Reinforced with Bamboo Fibers: Comparison of Linear- and Power-Law Weibull Models
In fibrous composites, tensile strength of reinforcements exhibits a stochastic nature, and the mechanical properties of the composites are significantly influenced by such strength variability. The present study aims at providing a comparative investigation of the influence of the statistical variation in fiber strength on the tensile properties of unidirectional composites reinforced by bambo...
متن کاملMechanical Properties of Irregular Fiber (Invited Review Paper)
Irregularities are inherent to virtually all fibers, including the conventional textile fibers, the high-performance brittle fibers and newly developed nano-fibers. These irregularities can fall into two main categories: dimensional or geometrical irregularity (external) and structural irregularity (internal). For natural fibers such as wool, diameter variation along fiber length is atypical ex...
متن کاملMicroscopic Characterization of Modified Phenol- Formaldehyde Resin Penetration of Bamboo Surfaces and its Effect on Some Properties of Two-Ply Bamboo Bonding Interface
The bonding interface between bamboo elements and adhesives is presumed to be significantly influenced by the degree of adhesive penetration into the porous network of interconnected cells of bamboo surfaces. In the study presented here, the average depth and effective depth of phenol-formaldehyde resin (PF) modified by different contents of lower-molecular weight (LMW) PF on bamboo surface wer...
متن کاملTensile and Flexure Strength of Unidirectional Fiber-Reinforced Composites: Direct Numerical Simulations and Analytic Models
A Local Load Sharing (LLS) model recently developed by Curtin and co-workers for the numerical simulation of tensile stress-strain behavior in fiber-reinforced composites is used to predict the tensile strength of metal matrix composites consisting of a Titanium matrix and unidirectionally aligned SiC fibers. This model is extended to include the effects of free boundary conditions and non-cons...
متن کاملAgnes Kovacs
The estimation of the tensile strength of certain brittle fibers at extremely short lengths from tensile strength measurements of these fibers at longer lengths is of fundamental importance in the theory of modern fiber composite materials. We examine a competing risks model in which the fiber strength arises as the minimum of two (independent) Weibull random variables having distinct Weibull e...
متن کامل